Recursive games: uniform value, Tauberian theorem and the Mertens conjecture “ $$Maxmin=\lim v_n=\lim v_{\uplambda }$$ M a x m i n = lim v n = lim v λ ”

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim v(n)

We provide an example of a two-player zero-sum repeated game with public signals and perfect observation of the actions, where neither the value of the lambda-discounted game nor the value of the n-stage game converges, when respectively lambda goes to 0 and n goes to infinity. It is a counterexample to two long-standing conjectures, formulated by Mertens [6]: first, in any zerosum repeated gam...

متن کامل

d e v e l o p i n g a n i n v e n t o r y m o d e l u n d e r a v e n d o r-m a n a g e d i n v e n t o r y (v m i) p o l i c y w i t h d e f e c t i v e i t e m s a n d p r i c e-d e p e n d e n t d e m a n d

o r g a n i z a t i o n s i n a s u p p l y c h a i n a r e i n d e p e n d e n t e n t i t i e s. a l t h o u g h a c o m p l e t e l y i n t e g r a t e d s o l u t i o n m a y r e s u l t i n o p t i m a l s y s t e m p e r f o r m a n c e, s u p p l y c h a i n m e m b e r s a r e i n t e r e s t e d i n o p t i m i z i n g t h e i r o w n o b j e c t i v e r a t h e r t h a n t h a t o f t...

متن کامل

$(m,n)$-algebraically compactness and $(m,n)$-pure injectivity

In this paper‎, ‎we introduce the notion of $(m,n)$-‎algebr‎aically compact modules as an analogue of algebraically‎ ‎compact modules and then we show that $(m,n)$-algebraically‎ ‎compactness‎ ‎and $(m,n)$-pure injectivity for modules coincide‎. ‎Moreover‎, ‎further characterizations of a‎ ‎$(m,n)$-pure injective module over a commutative ring are given‎.

متن کامل

$n$-cocoherent rings‎, ‎$n$-cosemihereditary rings and $n$-V-rings

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

متن کامل

S a V I N G a N D D E V E L O P M E N T

1. I n t r o d u c t i o n 382 2. P e r s o n a l s av ings 383 2_1. A simple model of individual saving 384 2.2. Evidence on the simple model 385 2.3. Uncertainty and saving 390 2.4. Borrowing constraints 392 2.5. Education and asset choice 394 2.6. Health, nutrition and savings 396 2.7. Bequests and savings 400 2.8. The family and savings 401 3. Savings at the national level 403 3.1. Aggregat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Game Theory

سال: 2015

ISSN: 0020-7276,1432-1270

DOI: 10.1007/s00182-015-0496-4